Transmural cardiac strains in the lateral wall of the ovine left ventricle.
نویسندگان
چکیده
The constant-volume property of contracting cardiac muscle has been invoked in models of heart wall mechanics that predict that systolic subendocardial left ventricular (LV) wall thickening must significantly exceed subepicardial thickening. To examine this prediction, we implanted arrays of radiopaque markers to measure lateral equatorial wall transmural strains and global and regional LV geometry in seven sheep and studied the four-dimensional dynamics of these arrays using biplane videofluoroscopy (60 Hz) in anesthetized intact animals 1 and 8 wk after surgery. A transmural gradient of systolic lateral wall thickening was observed at 1 wk (P = 0.009; linear regression) but was no longer present at 8 wk (P = 0.243). Referenced to end diastole, group mean (+/-SD) end-systolic radial subepicardial, midwall, and subendocardial wall thickening strains were, respectively, 0.08 +/- 0.08, 0.14 +/- 0.08, and 0.22 +/- 0.12 at 1 wk and 0.19 +/- 0.07 (P = 0.02; 1 vs. 8 wk), 0.20 +/- 0.04, and 0.23 +/- 0.07 at 8 wk. With the exception of an 8-ml (7%) increase in end-diastolic volume (P = 0.04) from 1 to 8 wk, LV shape and hemodynamics were otherwise unchanged. We conclude that equivalent hemodynamics can be generated by the left ventricle with or without a transmural gradient of systolic wall thickening in this region; thus such a gradient is unlikely to be a fundamental property of the contracting LV myocardium. We discuss some implications of these findings regarding mechanisms involved in systolic wall thickening.
منابع مشابه
Transmural sheet strains in the lateral wall of the ovine left ventricle.
In an attempt to provide a better understanding of our finding that regions with contracting left ventricular myofibers need not develop a significant transmural systolic wall thickening gradient, the analytic approach of Costa et al. was applied to the four-dimensional dynamic data obtained 1 and 8 wk after surgical implantation of transmural radiopaque beads in the lateral equatorial left ven...
متن کاملActive contraction of cardiac muscle: in vivo characterization of mechanical activation sequences in the beating heart.
Progressive alterations in cardiac wall strains are a classic hallmark of chronic heart failure. Accordingly, the objectives of this study are to establish a baseline characterization of cardiac strains throughout the cardiac cycle, to quantify temporal, regional, and transmural variations of active fiber contraction, and to identify pathways of mechanical activation in the healthy beating hear...
متن کاملHeterogeneity of left ventricular wall thickening mechanisms.
BACKGROUND Myocardial fibers are grouped into lamina (or sheets) 3 to 4 cells thick. Fiber shortening produces systolic left ventricular (LV) wall thickening primarily by laminar extension, thickening, and shear, but the regional variability and transmural distribution of these 3 mechanisms are incompletely understood. METHODS AND RESULTS Nine sheep had transmural radiopaque markers inserted ...
متن کاملPassive ventricular constraint prevents transmural shear strain progression in left ventricle remodeling.
BACKGROUND Passive ventricular constraint provides external cardiac support to reduce left ventricular (LV) wall stress and myocardial stretch, which are primary determinants of LV remodeling. Altered wall strain results in cytokine and reactive oxygen species production, which, in turn, stimulates apoptosis and extracellular matrix disruption and could be an important trigger for adverse globa...
متن کاملبررسی یافته های اکوکاردیو گرافیک قلبی در بیماران سیروز کبدی
Introduction: Cardiovascular abnormalities have been reported in liver cirrhosis (LC). In these patients, cardiac symptoms and physical signs occur as the liver functions worsen. Cirrhosis is associated with hyper dynamic circulation and beta-adrenergic system changes responsible for the cardiovascular abnormalities. The purpose of the present study was to explore the echocardiographic findi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 288 4 شماره
صفحات -
تاریخ انتشار 2005